Resit exam - Ordinary Differential Equations (WIGDV-07)

Monday 2 March 2015, 18.30h-21.30h
University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. The total score for all questions equals 90 . If p is the number of marks then the exam grade is $G=1+p / 10$.

Question 1 (10 points)

Solve the following initial value problem:

$$
x^{2} \frac{d y}{d x}=3\left(x^{2}+y^{2}\right) \arctan \left(\frac{y}{x}\right)+x y, \quad y(1)=1
$$

What is the largest interval on which the solution exists?

Question 2 (10 points)

Solve the following Bernoulli equation:

$$
\frac{d y}{d x}+y=\frac{x}{y^{2}}
$$

Question 3 (10 points)

Use an integrating factor of the form $M(x, y)=\phi(x)$ to solve the following equation:

$$
y d x+\left(x^{2} y-x\right) d y=0
$$

Question 4 (15 points)

Compute $e^{A t}$ for the following 3×3 matrix:

$$
A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
0 & 2 & 0 \\
1 & -2 & 3
\end{array}\right]
$$

Question $5(5+10+5$ points)
Let $C([0, b])$ be the space of continuous functions $y:[0, b] \rightarrow \mathbb{C}$ which is equipped with the norm

$$
\|y\|=\sup _{x \in[0, b]}|y(x)| .
$$

Consider the integral operator

$$
T: C([0, b]) \rightarrow C([0, b]), \quad(T y)(x)=x+\lambda \int_{0}^{x}(x-t) y(t) d t
$$

where $\lambda \in \mathbb{C}$ is a parameter.
(a) Prove that if $T y=y$, then y satisfies the initial value problem

$$
y^{\prime \prime}=\lambda y, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

(b) Prove that

$$
\|T y-T z\| \leq \frac{1}{2}|\lambda| b^{2} \cdot\|y-z\|, \quad \forall y, z \in C([0, b])
$$

(c) Let $y_{0}(x)=x$ and define the sequence $y_{n+1}=T y_{n}$. Prove by induction that

$$
y_{n}(x)=\sum_{k=0}^{n} \frac{\lambda^{k} x^{2 k+1}}{(2 k+1)!}, \quad \forall n \in \mathbb{N} \cup\{0\} .
$$

Question $6(2+3+5$ points)
Consider the following second order equation:

$$
x^{2} u^{\prime \prime}-2 x u^{\prime}+2 u=x^{3} \sin x .
$$

(a) Why is this equation called linear?
(b) Solve the homogeneous equation by substituting $u(x)=x^{\lambda}$.
(c) Compute a particular solution of the form $u_{p}(x)=A x^{m} \sin x$.

Question 7 (15 points)

Compute all real eigenvalues λ and corresponding eigenfunctions u for the following boundary value problem:

$$
u^{\prime \prime}+\lambda u=0, \quad u^{\prime}(0)=0, \quad u^{\prime}(\pi)=0
$$

Hint: consider the cases $\lambda<0, \lambda=0$, and $\lambda>0$ separately.

End of test (90 points)

Solution question 1 (10 points)

- First we rewrite the differential equation as

$$
\frac{d y}{d x}=3\left(1+\frac{y^{2}}{x^{2}}\right) \arctan \left(\frac{y}{x}\right)+\frac{y}{x}
$$

The variable $u=y / x$ satisfies a differential equation with separated variables:

$$
\frac{d u}{d x}=\frac{3\left(1+u^{2}\right) \arctan (u)}{x} \Rightarrow \int \frac{1}{\left(1+u^{2}\right) \arctan (u)} d u=\int \frac{3}{x} d x
$$

(2 points)

- Working out the integrals gives
$\log |\arctan (u)|=3 \log |x|+C \quad \Rightarrow \quad \arctan (u)=K x^{3} \quad \Rightarrow \quad u=\tan \left(K x^{3}\right)$, where $K= \pm e^{C}$. Hence, the general solution of the differential equation is given by

$$
y=x \tan \left(K x^{3}\right)
$$

(4 points)

- The initial condition $y(1)=1$ implies that $1=\tan (K)$ so that $K=\pi / 4$.
(2 points)
- The solution exists on the open interval $(-\sqrt[3]{2}, \sqrt[3]{2})$.
(2 points)

Solution question 2 (10 points)

- The exponent of the nonlinear term is $\alpha=-2$. Therefore we introduce the new variable $z=y^{1-\alpha}=y^{3}$ which satisfies a linear differential equation:

$$
z^{\prime}+3 z=3 x
$$

(3 points)

- Multiplying the equation with the integrating factor $\phi(x)=e^{3 x}$ gives

$$
e^{3 x} z^{\prime}+3 e^{3 x} z=3 x e^{3 x} \quad \Rightarrow \quad \frac{d}{d x}\left[e^{3 x} z\right]=3 x e^{3 x} \quad \Rightarrow \quad z=x-\frac{1}{3}+C e^{-3 x}
$$

(5 points)

- Hence, the solution of the Bernoulli equation is given by

$$
y=\sqrt[3]{x-\frac{1}{3}+C e^{-3 x}}
$$

(2 points)
Remark. The linear differential equation for z can also be solved by first solving the homogeneous equation and then applying variation of constants to find a particular solution.

Solution question 3 (10 points)

- Define the functions

$$
g(x, y)=y \phi(x) \quad \text { and } \quad h(x, y)=\left(x^{2} y-x\right) \phi(x) .
$$

The equation becomes exact if and only if

$$
g_{y}=h_{x} \quad \Leftrightarrow \quad \phi(x)=(2 x y-1) \phi(x)+\left(x^{2} y-x\right) \phi^{\prime}(x) \quad \Leftrightarrow \quad \phi^{\prime}(x)=-\frac{2}{x} \phi(x)
$$

An obvious solution is $\phi(x)=1 / x^{2}$.
(4 points)

- We have

$$
g(x, y)=\frac{y}{x^{2}} \quad \text { and } \quad h(x, y)=y-\frac{1}{x} .
$$

Next, we define a potential function by

$$
F(x, y)=\int g(x, y) d x+\psi(y)=-\frac{y}{x}+\psi(y) .
$$

By construction the equality $F_{x}=g$ holds. In addition, the equality $F_{y}=h$ holds if and only if $\psi^{\prime}(y)=y$. We can take $\psi(y)=\frac{1}{2} y^{2}$.
(4 points)

- The solution of the differential equation is given by the implicit equation

$$
F(x, y)=C \quad \Leftrightarrow \quad-\frac{y}{x}+\frac{1}{2} y^{2}=C
$$

where C is an arbitrary constant.
(2 points)

Solution question 4 (15 points)

- The characteristic polynomial of the matrix A is given by

$$
\operatorname{det}(A-\lambda I)=(2-\lambda)^{3}
$$

Hence, $\lambda=2$ is the only eigenvalue of A with multiplicity three.
(2 points)

- Straightforward computations show that

$$
A-I=\left[\begin{array}{rrr}
-1 & 2 & -1 \\
0 & 0 & 0 \\
1 & -2 & 1
\end{array}\right] \quad \text { and } \quad(A-I)^{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Hence, the first two generalized eigenspaces of A are given by

$$
\begin{aligned}
& E_{\lambda}^{1}=\operatorname{Nul}(A-I)=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]\right\}, \\
& E_{\lambda}^{3}=\operatorname{Nul}(A-I)^{2}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

Hence, the associated dot diagram is given by

$$
\left.\begin{array}{l}
r_{1}=\operatorname{dim} E_{\lambda}^{1}=2 \\
r_{2}=\operatorname{dim} E_{\lambda}^{2}-\operatorname{dim} E_{\lambda}^{1}=1
\end{array}\right\} \Rightarrow \bullet \bullet \bullet
$$

This means that we have one cycle of length two and one cycle of length one. (4 points)

- The 1-cycle is just a vector $\mathbf{v} \in E_{\lambda}^{1}$. For example, we can take

$$
\mathbf{v}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

The 2-cycle is given by $\{(A-I) \mathbf{w}, \mathbf{w}\}$ where $\mathbf{w} \in E_{\lambda}^{2} \backslash E_{\lambda}^{1}$. For example, we can take

$$
\mathbf{w}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \Rightarrow \quad(A-I) \mathbf{w}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] .
$$

(2 points)

- If we choose to list the 1-cycle first, then the Jordan canonical form is $A=$ $Q J Q^{-1}$ with

$$
Q=\left[\begin{array}{rrr}
2 & -1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right], \quad J=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right],
$$

(2 points)

- The inverse of the matrix Q is given by

$$
Q^{-1}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 2 & 0 \\
1 & -2 & 1
\end{array}\right],
$$

(3 points)

- Hence, we obtain

$$
e^{A t}=Q e^{J t} Q^{-1}=\left[\begin{array}{rrr}
2 & -1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
e^{2 t} & 0 & 0 \\
0 & e^{2 t} & t e^{2 t} \\
0 & 0 & e^{2 t}
\end{array}\right]\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 2 & 0 \\
1 & -2 & 1
\end{array}\right]=e^{2 t}\left[\begin{array}{ccc}
1-t & 2 t & -t \\
0 & 1 & 0 \\
t & -2 t & 1+t
\end{array}\right] .
$$

(2 points)
Remark. This question can be solved without using the Jordan canonical form.
We can write $A=D+N$ where

$$
D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \quad \text { and } \quad N=\left[\begin{array}{rrr}
-1 & 2 & -1 \\
0 & 0 & 0 \\
1 & -2 & 1
\end{array}\right]
$$

Clearly, the matrices D and N commute, that is $D N=N D$. Therefore, we can apply the rule

$$
e^{A t}=e^{(D+N) t}=e^{D t} e^{N t} .
$$

Note that the matrix N is nilpotent:

$$
N^{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

In particular, it follows that $N^{k}=0$ for all $k \geq 2$. We have

$$
e^{D t}=\left[\begin{array}{ccc}
e^{2 t} & 0 & 0 \\
0 & e^{2 t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right] \quad \text { and } \quad e^{N t}=I+N t=\left[\begin{array}{ccc}
1-t & 2 t & -t \\
0 & 1 & 0 \\
t & -2 t & 1+t
\end{array}\right]
$$

Finally, we obtain

$$
e^{A t}=e^{D t} e^{N t}=e^{2 t}\left[\begin{array}{ccc}
1-t & 2 t & -t \\
0 & 1 & 0 \\
t & -2 t & 1+t
\end{array}\right]
$$

Solution question $5(5+10+5$ points)
(a) - The equation $T y=y$ reads as

$$
y(x)=x+\int_{0}^{x} \lambda(x-t) y(t) d t
$$

Setting $x=0$ gives $y(0)=0$ so the first initial condition is satisfied.
(1 point)

- Differentiating both sides gives the equation

$$
y^{\prime}(x)=1+\int_{0}^{x} \lambda y(t) d t
$$

Setting $x=0$ then gives $y^{\prime}(0)=1$ so the second initial condition is also satisfied.

(2 points)

- Differentiating once more gives

$$
y^{\prime \prime}(x)=\lambda y(x)
$$

which shows that the differential equation is satisfied.
(2 points)
(b) For all $y, z \in C([0, b])$ and $x \in[0, b]$ we have the following inequalities:

$$
\begin{aligned}
|(T y)(x)-(T z)(x)| & =\left|\int_{0}^{x} \lambda(x-t)(y(t)-z(t)) d t\right| \\
& \leq \int_{0}^{x}|\lambda| \cdot|y(t)-z(t)| \cdot(x-t) d t \\
& \leq|\lambda| \cdot\|y-z\| \int_{0}^{x} x-t d t
\end{aligned}
$$

where we have used that $0 \leq t \leq x$ so that $|x-t|=x-t$.
(5 points)

Moreover, we have

$$
\int_{0}^{x} x-t d t=\left[x t-\frac{1}{2} t^{2}\right]_{0}^{x}=\frac{1}{2} x^{2} \leq \frac{1}{2} b^{2}
$$

(3 points)

Hence, for all $x \in[0, b]$ we have

$$
|(T y)(x)-(T z)(x)| \leq \frac{1}{2}|\lambda| b^{2} \cdot\|y-z\|
$$

Taking the supremum over all $x \in[0, b]$ gives the desired inequality.

(2 points)

(c) By definition $y_{0}(x)=x$ and this is equal to the given sum when $n=0$. Therefore, the formula is true for $n=0$.
(1 point)

Now assume that the formula holds for a certain n. Then

$$
\begin{aligned}
y_{n+1}(x) & =x+\int_{0}^{x} \lambda(x-t) y_{n}(t) d t \\
& =x+\sum_{k=0}^{n} \frac{\lambda^{k+1}}{(2 k+1)!} \int_{0}^{x}(x-t) t^{2 k+1} d t \\
& =x+\sum_{k=0}^{n} \frac{\lambda^{k+1}}{(2 k+1)!}\left(\frac{x^{2 k+3}}{2 k+2}-\frac{x^{2 k+3}}{2 k+3}\right) \\
& =x+\sum_{k=0}^{n} \frac{\lambda^{k+1} x^{2 k+3}}{(2 k+3)!} \\
& =x+\sum_{k=0}^{n} \frac{\lambda^{k+1} x^{2(k+1)+1}}{(2(k+1)+1)!} \\
& =x+\sum_{k=1}^{n+1} \frac{\lambda^{k} x^{2 k+1}}{(2 k+1)!} \\
& =\sum_{k=0}^{n+1} \frac{\lambda^{k} x^{2 k+1}}{(2 k+1)!}
\end{aligned}
$$

which shows that the formula also holds for $n+1$. By induction the formula holds for all $n \in \mathbb{N} \cup\{0\}$.
(4 points)
Solution question $6(2+3+5$ points)
(a) The equation can be written as $L u=f$ where

$$
L u=x^{2} u^{\prime \prime}-2 x u^{\prime}+2 u \quad \text { and } \quad f(x)=x^{3} \sin x .
$$

The equation is called linear because L is a linear transformation: for all scalars a, b and twice differentiable functions u, v we have that $L(a u+b v)=a L u+b L v$. An alternative answer is that the equation is linear because the solutions of the homogeneous equation $L u=0$ form a linear space.
(2 points)
(b) Substituting $u=x^{\lambda}$ into the homogeneous equation $L u=0$ gives the following characteristic equation:

$$
\lambda(\lambda-1)-2 \lambda+2=0 \quad \Leftrightarrow \quad(\lambda-1)(\lambda-2)=0
$$

Therefore, the general solution of the homogeneous equation is $u=a x+b x^{2}$. (3 points)
(c) We have

$$
\begin{aligned}
u & =A x^{m} \sin x \\
u^{\prime} & =m A x^{m-1} \sin x+A x^{m} \cos x \\
u^{\prime \prime} & =m(m-1) A x^{m-2} \sin x+2 m A x^{m-1} \cos x-A x^{m} \sin x
\end{aligned}
$$

(3 points)

Substitution into the equation $L u=f$ gives

$$
2(m-1) A x^{m+1} \cos x+\left[\left(m^{2}-3 m+2\right) A x^{m}-A x^{m+2}\right] \sin x=x^{3} \sin x
$$

Obviously, this equation is satisfied with $m=1$ and $A=-1$. We conclude that $u_{p}=-x \sin x$ is a particular solution.
(2 points)

Solution question 7 (15 points)

- For $\lambda=0$ the solution of the differential equation is $u(x)=a x+b$. The boundary conditions imply that $a=0$ and b is arbitrary. Therefore, $\lambda=0$ is an eigenvalue. A corresponding eigenfunction is, for example, given by $u(x)=1$.
(3 points)
- For $\lambda<0$ we can write $\lambda=-\mu^{2}$ and then the solution of the differential equation is

$$
u(x)=a e^{\mu x}+b e^{-\mu x} .
$$

The boundary conditions give the equations

$$
\left[\begin{array}{cc}
\mu & -\mu \\
\mu e^{\mu \pi} & -\mu e^{-\mu \pi}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Nonzero solutions for a and b only exist when the determinant of the coefficient matrix is zero:

$$
\mu^{2}\left(e^{\mu \pi}-e^{-\mu \pi}\right)=0 .
$$

The latter equation only holds for $\mu=0$, but this contradicts that $\lambda<0$. Therefore, $\lambda<0$ is not an eigenvalue.
(6 points)

- For $\lambda>0$ we can write $\lambda=\mu^{2}$ in which case the solution of the differential equation is

$$
u(x)=a \cos (\mu x)+b \sin (\mu x) .
$$

The boundary conditions give the equations

$$
\left[\begin{array}{cc}
0 & \mu \\
-\mu \sin (\mu \pi) & \mu \cos (\mu \pi)
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Nontrivial solutions for a and b only exist when the determinant of the coefficient matrix is zero:

$$
\mu^{2} \sin (\mu \pi)=0
$$

The latter equation only holds when $\mu \in \mathbb{Z}$. Note that $\mu=0$ contradicts the assumption that $\lambda>0$. Hence, we obtain the eigenvalues $\lambda_{n}=n^{2}$ for $n=1,2,3, \ldots$ The corresponding eigenfunctions are, for example, $u_{n}(x)=$ $\cos (n x)$.
(6 points)

